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Experimental proof of standard electrodynamics by measuring the self-force
on a part of a current loop
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The results of measurements of the force on a part of a circuit carrying a steady current, due to the action of
the whole current loop, are reported. The theoretical value of the force has been calculated using the standard
electrodynamics force law. Taking into account the finite dimension of the wire forming the current loop, the
calculation implies the computation of a sixfold integral. Contrary to the past experimental outcome reported
in the literature, a comparison of a theoretical predictions with the present experimental results corroborates the
standard force law within the limits of experimental errg81063-651X98)11706-3

PACS numbsds): 41.20.Jb, 41.96-¢, 03.30+p

I. INTRODUCTION 2
dB= #odd 3Jv><(r—r’)(1—v—)
v or—r’ l c?
In this paper we present the experimental results and the Amlr—r'} 1-=- - )
relevant theory regarding the electromagnetic force due to ¢ fr=r’|
the electric current flowing in a closed circuit and acting on a r—r’
a part of it. The experiment performed is like that of Arrge o r'yvx
However, a comparison of theory and experiment could not
be done before the advent of modern computers. Indeed, the r—r’ r—r’
self-forceF (of a part of a circuit on itselfcannot be calcu- +a><T[|r—r’|—v~ P ] . (1)
lated in the approximation of an ideal wire with zero cross
section carrying a steady current becaéseould diverge
logarithmically when the radius of the wire tends to zerd: The  Laplace  expression dB=(ue/4m)dqvX(r
has to be calculated as the integral over all the volumes, i.e5r’)[r—r’| 3 (which leads to the Biot-Savart lavis an
by a sixfold integral. approximation to Eq(1) for v/c—0 and for negligible ac-

Before discussing the experiment, it is important to clarify celerationa. On the contrary, Ampe's law [given by Eq.
a point we did not find in the literature. It is often written that (1) of Ref.[1]] is not even an approximation. However, the
what we measure are forces between closed circuits and wdenard-Wiechert expressions and those of Lapl&git-
can draw from them infinite different elementary laws thatSavart and Ampee give the same result when integrated
express the forces between two elements of the wires. THeVer a closed circuit.

most famous expressions are those of Grassrtgametimes A stir:nulus to perform the plresent experz]rimentd(_:ame from
called theBiot-Savart lavy and Ampee [1]. Some of ug1] WO rather recent experimental work® 3] where a disagree-

have shown that the Ampe and Biot-Savart elementary ment between standard theory and experiments is claimed.

laws lead to the same result even for the force on a part of gxamlnmg Ref.[Z], we concluded th"’}t the re_Ievant experi-
T T S ment was unreliable for two reasons: the existence of sharp
circuit and due to the whole circuit. However, it is also pos-

angles, which imply a strong force not considered by Pappas

S'bli th> derive fthe _correct elemen(;ar%/ law bly ﬁons'de”n%%], and the use of pulsed currents whose durations depend
each element of a wire as composed of several charges at rést 1o manual technique of the experimenter.

(ions) and other opposite chargéslectrong with an average The second experimef8] is affected by the strong force,

velocity v. Then, by applying the Lienard-Wiechert law comparable to the useful one on the rest of the circuit, due to
[valid for a pointlike charge with any value of its advanced the electrical connection, and not considered by Phifs

(with respect to the field point at timg positionr—r’, |n fact, if the current is the same, the force is the same for
advanced velocityw(t—|r—r’|/c), and advanced accelera- circuits of different sizes but similar in shape. Since the two
tion a(t—|r—r’'|/c)], we obtain electrical connections used by Phigf3 are just similar to

the main circuit, the total force is three times that acting on
the main circuit.
In our experiment we tried to shape the electrical connec-
tions so as to be as near as possible to straight lines. Yet the
*Electronic address: cavaller@dmf.bs.unicatt.it calculations of the forces due to the connections yield about
"Electronic address: spavieri@ciens.ula.ve 6% of the total force and they must therefore be considered.
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FIG. 1. Sketch of the electrical circuit. The segments 1-6 con-
stituting the circuit are divided into two parts: 1-3 represent the A
mobile part(on which the force has to be measureaid 4-6 rep-

resent the fixed parR denotes the radius of arc 1 am), andM,
the two mercury troughs.

S

The structure of our paper is the following. In Sec. Il we
describe the electric circuit and the experimental apparatus FIG. 2. Sketch of the experimental apparatus. A current supply
used to measure the force on a mobile part of the circuit an& feeds a current,, measured by an amperometer(more pre-
due to the whole circuit. The mobile part is electrically con- cisely a multimetey; to the circuit, already schematized in Fig. 1,
nected to the fixed part by a mercury trough. In Sec. Il weand supported by three suspension thréladd ,, andTs. A torsion
calculate the forces using the mentioned standard thgloey balanceB,, consisting of a torsion wirdV, and a torsion angle
Biot-Savart lav. In addition to the difficulty regarding the lecture headd,, measures the forde acting on the mobile part of
calculation of a convergent sixfold integral with a divergentthe circuit by an armA, connected to the plat® fixed to the
integrand, another difficulty consists in calculating the forceinsulating rodD. A second torsion balancB, (lecture head,,
on the conductor immersed in the mercury trough since, fol¥iIr¢ W, and armB,) is used to eliminate the mechanical plays.
this task, one has to find the distribution of the currents in the/ "© électrode¥ are partially immersed in the mercury contained in
mercury and in the bronze of the trough. Appendix A isthe troughs.

dedicated to these long calculations. In Sec. IV we report on

the experimental results and agreement with the theoreticz%?m IS a v_arlable geometry circuit of the type shown in Fig.
predictions. We conclude in Sec. V. . The third system allows the measurement of the forces

acting on the mobile part by reacting mechanically to any
displacement.

The mobile part of the circuit is made of a semicircular

In order to measure the force acting on a part of the circuirc 1 continuing with two straight segments 2 and 3, at the
and due to the whole current loop, the part in consideratiognds of which there are two electrodégsee Fig. 2 and, for
must be electrically connected to the remaining part but mustetails, Fig. 5 of Appendix A, where the mercury trough is
be free to move with minimum friction with respect to the extensively studied These electrodes have the purpose,
fixed part. After several attempts, we have found it best t@once put in the mercury troughé, andM, respectively, of
use the traditional method of the mercury trough, as showroviding the electric contact with the fixed part. The arc is
in Fig. 1. Moreover, in order to know the current behavior inkept rigid by the insulating ro® fixed to it. A rectangular
the parts(1—3 of the circuit on which the force is measured, plateP related to the third system is attached to the center of
we have to avoid sharp edges. The mercury troughsand  the rodD. The arc is suspended by three thre@glsT,, and
M, provide the electrical connection of the mobile to the T3. The thread¥, andT; are fixed to the ends of the rdal
fixed part. Three other sections of the circuit are also show@and T, is fixed to the middle point of arc 1.
in Fig. 1 (4-6), which represent the fixed part of the circuit  The fixed part has two different possible configurations,
(while sections 1-3 represent, as said, the mobile patth ~ one called short§) and the other long4). The short one
this splitting we can more conveniently calculate the contri-has segments 5 and 6 of negligible length, ilge=1¢=0,
bution of each section to thB field and therefore to the while in the long configuration the length of these sections is
force on each section. In order to calculate the force on parts=15=60.10 cm. The two mercury trough¥,; and M,
1-3, the fixed parts 4—6 may be considered as made of a thipelong to the fixed part and, to calculate the force on the
wire while the contribution due to the edges is of little im- distant arc 1, we may approximak#,; and M, to two sec-
portance. The mobile parts 1-3 must have no edges becausens of length equal to their internal radiug=1.52 cm in
on them acts also the force due to the fiBlgd produced by the £ configuration since wires 5 and 6 end at the internal
the mobile part itself, which requires, for its determination, lateral surface of the mercury trougtfer details see Fig.)5
the computation of a sixfold integral. In the S configuration wire 4 is soldered dvi, so the sym-

The experimental apparatus schematized in Fig. 2 is commetry axis of wire 4 is a distancé=0.488 cm from the
posed of three systems. The first system, a current supply internal surface of mercury trough. The same connection oc-
plus a digital multimeterA, is used for the generation, the curs for wire 5 that, in the& configuration, is parallel to wire
inversion, and measurements of the current. The second sy4-and separated from it by a thin insulator. The equivalent

Il. EXPERIMENTAL APPARATUS
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lengths of the fixed part in the two configurations are there-
fore X

S 1,=29.10 cm,
lseq=lgeq=!=ro+d=(1.52+0.489 cm=2.008 cm;

L: 1,=29.10 cm,

)
h
)

|

|

J

-Z

lseq=leq=!=15+T10=(60.10+ 1.52 cm=61.62 cm. 0

2
. . L . FIG. 3. Arc 1 of Fig. 1 with an enlarged cross section of the
This approximation is not acceptable for the calculation ofyire seen in perspective. The origin of the Cartesian coordinates is

the forceFy on the sectiorV (see Fig. 2immersed in the 4t the cente® of the semicircular axis of arc 1. We have used polar

mercury and Appendix A is dedicated to the correct calculacoordinates andé in each cross section, the andletarting from
tion of F,,. Obviously, side 4 is not directly connected to R.

side 5, but both of them are connected to the current supply
S, as shown in Figs. 1 and 2. The two connections are very
close to each other so that the residual magnetic field pro- F:f f fd3rj(r)><B(r), (5)
duced by them on arc 1 is negligible. 1
The values of the different sections of the mobile part are
the same in both th€ and S configurations. They are
with B(r) given by Eq.(4).
Because of symmetry, the resultant force on the mobile
part of the circuit is parallel to the axis, so Eq(5) implies
that the active sections are those that have components per-

The third system is composed of two parts, one determinpendlcmar o the axis, i.e., arc Isee Fig. 1and the two

ing the relative position and the other measuring the forcé)ent sections immersed in the mercury and parallel tosthe

acting on the mobile circuit. The part that determines theaXiS(See details in Fig. 5 of Appendix)AThe magnetic field

relative position consists of two electronic barriers, two im-at the position of arc 1 is due to all of the circuit including
pulse counters, and the plaefixed to the middle point of &'C 1 itself. The forceF e due to the rest of the circuit
the insulating rod. The part of the third system that mea- (€xcluding 1 itself is easily calculated because we may ap-
sures the forces acting on the mobile circuit is formed by twdProximate the real conductors by wires of infinitesimal cross
torsion balance8, andB,. The second baland®, does not ~ Sections. Consequently, Eqd) and (5) reduce, ifl, is the
intervene directly in the measurements because it has tHeonstant current flowing in the circuit, to
function of opposing the first one when, in the absence of

current, we look for the equilibrium position of the mobile

part. Moreover, it has the useful purpose of eliminating the M0|§ r—r’
mechanical plays. The displacements of the mobile parts 1-3 FrestZHLd f2+3+4+5+6df' |

are revealed by the interruption of the beam of light emitted

by photodiodes on the electronic barriers at the position of

the plateP and measured by the impulse counters. When the ) o
action of the current displaces the mobile part from the equill IS convenient to separate the circuit into two parts, sym-
librium position, we shift it back to the original position by Metric with respect to the axis so that the contribution to
rotating the headH, of the first balance. In this situation the the force on arc 1 and due to section 2 is equal to that of
electromagnetic force is equilibrated by the elastic torsiors€ction 3, the contribution due to 6 is equal to that of 5, and

force of the wireW, and the value of the force may be the contributions of the two half sections(dne fromz=
measured. —R to z=0 and the other fronz=0 to z=R) are equal.

Setting

a=0.25 cm(the radius of all the wires

R=1,/2=14.55 cm, l,=1;=h=25.45 cm. (3)

r—r’| '

[ll. CALCULATION OF THE FORCES

ON THE DIFFERENT PARTS OF THE CIRCUIT I'=1/R, h'=h/R @)

As said in the Introduction, Eq1) reduces to Laplace’s
first law whenv/c—0 and the acceleration term is negli-
gible. Sincedqv=jd®, we have Laplace’s first formula and denoting byd the angle between the radius veckof
arc 1(see Fig. 1 and —e, (Wheree, is the unit vector of the
z axis ande, ande, denote the unit vectors of theandy
|3' axes, respectivelywe obtain from Eq(6) for the x compo-
(4)  nent(which is the only one different from zero because of
the axial symmetry around theaxis), after performing ana-
The forces are then calculated by Laplace’s second law lytically the second integral,

r—r’
r!

Mo ;
B(r =—f ff d3r'j(r'yx
") 4 142+3+4+5+46 ) [r—
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2 . .
wol2\2 (= ) h'+1’+sinmd sind
Frest:04—0ﬂ_fo dd smﬁ{

(1—cosf))[(h’+|’)2/2+(h’+l’)sinﬂ+(1—cost})]1’2_ (1—cosd)3?

N 1 [ cosy N 1-cosy
sind+ h’+|’[[1/2+(h’+l’)sim‘}+(h’+l’)2/2]1’2 [(1—cos:5‘)+(h’+l’)sinﬁ+(h’+|’)2/2]1’2

], 8

where the terms inside the two large square brackets corrd-o calculate this integral it is convenient to consider cross

spond to the force on 1 due to sections 2, 6, 5, and 3, andections of the semicircular wire 1, i.e., circles obtained by

section 4, respectively, of Fig. 1. intersecting the wire by planes containiRgand perpendicu-
Now we have to calculate the force acting on arc 1 due tdar to the wire axis. We denote hythe distance of a generic

1 itself. The corresponding magnetic field diverges logarithpoint P (inside the circular cross sectipfiom the wire axis

mically as the diameter of the conductor becomes infinitesiand by ¢ the angle betweeR and p. Choosing the coordi-

mal. It is therefore essential to use a conductor of radius nate axes, as shown in Fig. 3, the radiusf a generic point

ConsequentlyR is the radius of the axis of the semicircular is r=R+ p. Consequently, introducing the dimensionless

arc 1. Supposing that the current dengitis uniform and  quantitys=p/R, the coordinates oP are

parallel to the unit vectord tangent to the arc passing

through the considered point, it is=9 I4/7a% Conse- x=R(1+s co<)sind,
quently, the force on 1and due to 1 itselfis given by the
sixfold integral obtainable by Eq$4) and (5), y=—Rssin¢, (10
2
F,=0 |_°> 7= —R(1+s cost)cos.
47\ a2

The Jacobian of the transformation frawmy,z to s,&,7 is

xf f fd3rf f fd3r’ ﬁx[ﬁ’x(r—r’)]. (9) R3s(1+s cosb). Then we ob_tain_from Eq) for the com-
1 1 lr—r'|3 ponent of the force in th& direction

_Fo
Y4

|0 2 a/R a/R 27 27 T T
— R4f sdsJ s'ds’f dgf dg’f dq_‘}j do’
mTa 0 0 0 0 0 0

X{(1+s cogt)(1+s'cost’)sind[(1+s'cost’)—(1+s cot)cog O—9')]}

X{2+8?+5'2+2(s cost+s'cost’) — 258 sinésing’ —2(1+s cost)(1+s'cogt’)cod 9—9')} %2 (1)

Since the integrand contains an integrable divergence, thdifferent from those obtainable by Grassmann’s [aaming
numerical calculation of this integral is very delicate andfrom the two Laplace’s law#l) and(5)]. Pappas claims that

Appendix B is dedicated to it. the Ampee law (which satisfies the action and reaction prin-
The results for theS and £ configurations are given, re- ciple) implies a longitudinal action between the wire sections
spectively, by 6 and 2(and between 5 and) 3hat is larger than the forces

on the rest of the circuit. This stronger force would be absent

2 in the short configuration. On the contrary, the use of the

| 12
FreSS+F1:Mo 0(1_4937+ 8.8015=10.29§L0—0, Laplace laws(4) and (5) makes it intuitive that the only
4w 4m useful force is that acting on arc 1. Moreover, some dfljs
5 5 have shown that both the Grassmann and Ampaws lead
Mo 15 _ ﬁo'o to the same result even if applied to the force on a part of a
Frese ™ F1= A1 (1.2704+8.8019=10.07 A7 closed circuit. In any case, to give Pappas a direct, ex-

(120  perimental answer, we have used the two configurations
(short and lonyg
We see that the two theoretical results in ER) differ very Thex component of the force on the two vertical sections
little from each other, contrary to Pappa$d claim. Actu- V (see Fig. 5 immersed in the mercury has been calculated
ally, Pappas supports the Ampelaw as leading to results in Appendix A and turns out to be given by
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FIG. 4. Comparison between
theoretical calculationgsolid line)
and experimental datédots with
error bars for the forceF on the
mobile part when the currerlty
flows in the circuit. The results
are relevant tq(a) the short con-
figuration and(b) the long con-

figuration.
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Mo'g the resultant average is unaffected by the magnetic field of
2FV3=0.675Q11‘0.08)H, the Earth.
(13 Another cause of error is due to the friction force on the

two electrodesV partially immersed in the mercurysee
Figs. 2 and band caused by the surface tension of the mer-
cury surface. For small values of the curréptthis friction
force can be one order of magnitude larger than the electro-
roughly 0.06 times the force on the mobile part of the circuit.dynamical force. It has been necessary therefore to displace
We see that By is not negligible and has to be taken into forcedly the mobile part by rotating the head of the torsion
account even in our configuration, which strongly reducesalance. Any displacement was the minimum necessary to
these forces with respect to Phipps’s arrangenightThe  trigger the forward impulse countéwhose sensor is a pho-

2
Mol
2FV£=O.58331i0.08)%

total force turns out to be todiode. Denote byF; the forward force to produce the dis-
placementF; is opposite the sum of the electrodynamical
F s=Frestst F1+2Fy5=0.10971+0.00612 dyn force Fgq and the forward friction forcécion ¢, i-€., Fi=
(14 —(Feqs+ Fticiion ). Then an opposite displacement is pro-
duced again by oppositely rotating the head of the torsion
in the S configuration and balance. Denote by, the corresponding backward force,

F,=Frestc+ F1+2Fy,=0.10661+0.00513 dyn — ﬁ x
(15) o — _;7‘

in the £ configuration, wheré, is measured in amperes. The
uncertainties in the theoretical calculations are mainly due to
the approximations used in Appendix A to calculate the two
forces Fy,. The theoretical results are represented by the
solid lines of Fig. 4a) (shord and Fig. 4b) (long).

TN

IV. EXPERIMENTAL MEASUREMENTS

One of the causes of error is due to the action of the ' 'C-5. Cross section of the mercury troulgh of Figs. 1 and 2,

magnetic fieldB of the Earth. Fortunately, the corresponding connected to the conductor 5 in the long configuration. The elec-

- . . . .~ trodeV is partially immersed in the mercury and is the end of the
force is proportional td,, so it changes sign when the di- d 3 of Figs. 1 and 2. We d bythe i Ny |
tion of the current is reversed. It is apparent that the avs uctor 3 of Figs. 1 anc 2. We denote bythe interna’ latera
rec . . ) wall and byM the internal bottom oM . Moreover,N is the end
erage value of this force is zero for two measurements mad

. . . . &nter of conductor 5 an@ is the intersection of a vertical axis
with the same value dfy but of opposite directionsl§ and yaraliel toy) passing througiN with the mercury surface whose

—lo). On the other hand, the self-forces generated by th@ginate isy,. The ordinate oM is y,,. The shown flux lines of
system depend off and are independent of the sign Igf j=onE have axial symmetry because the conductivity of the
Thus, if for a fixed, absolute value bf the current is made mercury is much less than the conductivity of the bronze in the
to flow in one direction and then in the opposite direction,trough.
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which can be written aBp= — (Feq+ Frriction b) - NOtice that  error of = 0.8%, which increases to 1% if we impose, as we
Feq:# Feqp because the two electrodynamical forces are relshould, that the straight lines pass through the origin. This is

evant to two different positions. IFicion t=—Fficiont, ~ What we have done in Fig. 4. Standard error analysis has
adding the above expressions gives for the electrodynamic&een applied to the data to obtain the standard deviation. The
or net force, whendFqd > |Fyiction|» average value of the experimental foreg, and its standard

deviation turn out to be given by
1 1
(Fed>=§(Fedf+ Fedb):_z(Fb+ Ft). (16) Fexs=0.110710.0012 dyn (18)

To take the average of backward and forward forces as thg the S configuration and by

“average” electrodynamical force implies a 0.3% error since

the force on the conductdr of the mercury trough is not Fex£:0.10711i0.01)|(2) dyn (19
linear with the displacement but roughly inversely propor-

tional to the distance fronNGL of F|g 5 'V'O,reo‘{e“ an in the £ configuration. Comparing the experimental results

uncertainty of 2 mm of the exact pos_|t|on|ng‘<z_5f|mpl|es an  (18) and(19) with the theoretical resultél4) and (15), we

uncertainty of 8% in the .force oW Smge 2:.V IS = 6% of  gee that they agree to within experimental errors and theoret-

the total force, the mentioned uncertainty implies=0.4% .| approximationgsee Fig. 4a) and Fig. 4b)]. Conse-

uncertainty for the total force. o quently, our experimental results contradict those of Pappas
Possible asymmetries in the friction forces, i.eFfion 1 [2] and confirm the standard theory.

differs appreciably from—Ficionn, 0ring about asymme-

tries in the experimental values leading to an interpolating

curve forF that does not vanish when the currégtvan- V. CONCLUSIONS

ishes. WherFed <|Fyicion| the external forcé, is parallel Our “old-fashioned” experiment of classical electrody-
to Feq o the latter is given by namics shows in a definitive way that there is agreement
1 between experimental data and the theoretical values calcu-
F =—(F.—F 1 lated by standard theory. “Old fashioned” is with regard to
ed™ 5 (Fr—Fp). 17 . : :
2 the kind of experiment, but not the experimental apparatus

) . ) . i i and the computers necessary to perform the sixfold integral.
It was impossible to obtain reliable data without this av-  The agreement foun@nside the experimental and the nu-
eraging procedure. The friction force due to the surface layeperical computationsallows us to disprove all the papers
of mercury increased with timeand in particular after the [4] claiming the standard theory to be wrong and that there
temperature of the mercury increased around 50 °C whegye no direct, recent, dedicated experiments. In another paper

operating at high current intensitiesaoo A). Actually, a 5], special mention is made of a recent work of A4
high temperature favored the formation of a small amount ofyho claims to derive gravitation from Weber's force law

amalgam while the dust depositing on the mercury surfacganother elementary law
increased with time, thus forming an almost elastic mem-
brane. We therefore purified the mercury by means of a filter
after any group of measurements.

Another improvement has been achieved by using a sec- \ye wish to thank the CNRitaly) and the CDCHT ULA,
ond torsion balancd, (see Fig. 2 that exerts a traction Merida, Venezuela, for sponsoring this research.
somewhat larger than the friction forcB, eliminates the

mechanical plays and also allows one to use(&6). only. In
fact, balancd3; has to exert a force always oppodig even
when|Fed <|Fgicion] @nd there is no longer the necessity to 1. The mercury trough and generalities for the calculation
use Eq.(17). of the force on the sectionV immersed in the mercury
We have collected 6000 reliable experimental data of
which 2000 were needed to obtain the equilibrium point in . : ; .
the absence of the currehy. The 4000 useful values have practlca_ll arrangement for the e_IectrlcaI connections is that
been divided into 20 different values for the current intensityShown.m Fig. 5, where we consider the mercury “0"’.4’9
(see Fig. L We must calculate the forde, on the vertical

I o. For each of the 200 values relative to the same valug of ectionV belonding to the mobile art of the circuit and
we have made different groups of measurements, which areeCt . gng P .
partially immersed in the mercury. We take theaxis as

reported in F|g. @) fpr the 5 conflggratlon and in Fig. @) symmetric toV and thex axis as symmetric to the horizontal
for the £ configuration as a function of2 so as to have >’ - :
wire 3. The contributions té-, antiparallel tox come from

straight mterpolatm_g Ime@s req_uwed by the.oryActuaIIy, the wires 3 and 5 in the long configuration and only from 3
the best interpolating straight lines according to the least- : . .
2 “““"in the short version. It igFys|<|Fy5| with F\3<0. The
squares method do not pass through the origin, showing a_ . = * . _
) . . ¥ contributions parallel to th& axis are due to the bottoid
clear error due to some bi@®r instance, the surface tension of the mercury troughidenoted byF,, ), the lateral walll
of the mercury trough for an inexact symmetry between the y 9 Vil
two positions, forward and backward, as explained in Sec{denoted byFy ), and the current connecting the cerfteof
I1). Since we are interested in the slopes of the two interpothe ending cross section of 5 with the poi@tat the free

lating straight lines, standard error analysis gives for it arsurface of the mercuridenoted byFy, ).
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APPENDIX A

After many attempts we have found that a convenient,
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FIG. 6. Circuit, made of filiform wires, roughly approximating
the mercury trough of Fig. 5, in particular of BGL, M, V, and 3.

The currents in 3, 5, anNG may be considered as wire-
like and having the full valud,. The contribution of the
opposite arm Aparallel to 3 and withz=2R) is less than
10 %F; and we neglect it. The calculation Gf\,L+ Fy,, is

extremely difficult to perform in a rigorous way because the

current densityj inside the mercury must satisfy the conti-
nuity equationV -j=0 (in steady-state conditiopnand is re-
lated to the electric fiele by j=o,E, where o, is the
conductivity of the mercury. In turrk is related to the scalar
pgtentialgo by E= —V ¢ and¢ satisfies the Laplace equation
Vep=0.
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We then apply Eq(6) of the main text, which in our case
becomes

!

2\ -1

Mo'o) f f r—r’ .
— Fys= [ drx dr’' X——
( 4m RAVE 5+3+M/2+L* [r—r'|3 &

r'l
u ~To y
=— mdf dx————
fo ) (x2+y?)32
ym—Ry h y
— '™ d fdx—
fRV y 0 (xX’+y?)%?

* 0 * _
+JYm Rvdyj dx Ym™Y
Ry o DEH(ym—y)?1¥?

+fy;d jhd ,—ro
y| dy - :
o “Jo T [rf+(y—y)?P?

(A2)

A second, more difficult problem is that we cannot obtainwherer,h are given by Eqs(2) and(3), y}, is given by Eq.

the forceF,, by simply calculating the Lorentz force on the
conductorV. Actually, the Lorentz force acts also on the

(A1), Ry=1.5a [with a=0.25 cm given by Eq.3)], |
=61.62 cm in thel configuration, and=rg in the S con-

current distributed in the mercury so that the electrons argiguration. The results for the& and £ configurations are

slightly displaced from their ions and a very small electricgiven, respectively, by
charge appears on the surface of the mercury, on the lateral
wall L, and onV. Consequently, an electrostatic force com-

parable to the magnetic one acts ¥nBecause of this, we

first approximate the mercury trough by a simple circuit

made of filiform wires, as shown in next section.

2. An equivalent circuit made of filiform wires

ol3
FV*S—O.3942'IZ—W for S,
(A3)

|2
FV*£=0.3112£% for L.

As a first approximation we present a schematic of the

mercury trough by the filiformi.e., with zero cross sectipn
circuit shown in Fig. 6. The wires 5 and(Bow represented
only by their axesremain the same, while the conductors

3. Calculation of the force onV in the real situation
with distributed current

Let us now return to the real configuration shown in Fig.

prolonged up to the bottor /2, where /2 denotes that it has 5 The results of the preceding section show that the joint
a length equal to half the diameter of the mercury troughcontribution of the two conductor¢ (immersed in the two

The lengthening oV* up to M/2 is necessary in order to

mercury troughkis = 6% of the total force. It is therefore

take into account the current distribution in the mercury ongyfficient to calculaté,, with a 10% approximation to have

which the Lorentz force acts. This force is transmitted/to
in Fig. 5 and toV* in Fig. 6 via the electrostatic fordglue
to the displacement of the charges in the merguithe
length ofL* (equal to that ofv*) is less than thg,, of Fig.

5 because the flux lines gfare distributed in the mercury
starting from its surface up to the bottavh. Precisely, with
reference to Fig. 5, we leave unaltefd¢ and reduce by a
fraction =0.5 the distance o from M. Consequently, the
newy, is

Ym=Yi+0.5yn—Vi). (A1)

The forces onV* and due to 5 and.* are calculated by
consideringv* as a straight segment connectivg? to 3. If

the same procedure is adopted to calculate the forcég*on
due to 3 andv/2 we would obtain two logarithmic diver-

a 0.6% approximation for the total force whose experimental
value has an uncertainty of 1%. Hence it is useless to face
the extremely difficult problem of looking for an exact value.
Moreover, a change of more than 20% in the distribution of
the current in the mercury produces a variationFgf less
than 5%. Consequently, we proceed in an approximate way
that guarantees a value B, within a 10% approximation.
The difficulty that comes from the boundary conditions
may be simplified greatly if the trough is considered as equi-
potential. This simplification is justified sinceo,
=0.033r,, whereoy, is the conductivity of the bronze con-
stituting the trough. In this case the magnetic fiBldlue to
the current flowing in the mercury vanishes because of the
axial symmetry of the distribution of. Consequently, the
force onV due to thisj vanishes. It is also possible to draw
with a good approximation the distributions of the flux lines

gences that are equal and opposite. We therefore eliminafer bothj andE, as shown in Fig. 5. The distribution of the

two short connections of* (connecting it withM/2 and 3
when we calculate the actions of 3 a2 on V*.

current densityj (per unit surfaceon the lateral wallL is
fairly well approximated by



2512 G. CAVALLERI, G. BETTONI, E. TONNI, AND G. SPAVIERI PRE 58

6
1 1
—=) — (AB)
N e S— — Ry, k; R.,
= =
5
1 1
"klz-;ﬂ,x" —= (A7)
ATRS RVM k=1 I:sz
Vsl .\\‘\ _ o ) _
: ‘= v where the sixth contribution to E¢A6) and the fifth contri-
THR bution to Eq.(A7) are roughly due to 2/3 and 1/3, respec-
Mt ‘\ tively, of the sixth flux tube starting frorv, .
A HELIRY We write as an example the explicit calculations for a
generickth resistancer, of the kth gap between truncated
cones whose traces on tkg plane are shown in Fig. 7:
Y 1 (la dl
' o] sag (A8)
FIG. 7. Cross section of hall, with traces of flux tubes of the TmJ 13 Sl

current densityj flowing in the mercury, schematized as straight wherea, is the mercury conductivitydl, an element of the
lines. Their axes are shown by dashed straight lingss the radius m y k

of the internal wallL andr ¢ the intersection wittM of the flux line aXIS.Of thekth flux tube trace, an&k(l!() the yarlable_ cross
issuing from the corner of the cross sectionvof section of thekth flux tube. The limits of integration are
obtained as follows. Prolong the traces of #tha flux tube
(y—y) until they cross at a poirtl, shown in Fig. 7 fok=6. Then
j:jocog{—}:jocosT_ (Ad) l1¢ is the length of the segmemt, Q,, of Fig. 7, i.e., the
2(Ym=Yr1) distance fromH, of the intersection of th&th axis with the

The constant, will be obtained from the currenr{ flowing extemnal wall of the conductdv, while Iy is the segment
into the mercury from the lateral wall. To find the distri- HiQzx, 1.€., the distance frorh of the intersection of the
bution of j on the internal bas®! of the mercury trough we kthlfa);'s |W|th t?he Tternal walll t%f tEe mercfutrzﬁtqrtzlughi b
notice that some flux lines issuing from the lateral wal\Mof k(i) IS the transversal thickness o ux tube
end on an annular strip betweeg=0.828, and ro, the trace andhyy its final value(where the flux tube intersects
latter being the maximum radius ofl (see0 Fig. 7.0’This the mercury trough we havehy/ha=li/lz. If 6 is the
modifies the known behavior of the flux lines due to a diskahnglebbereeryHand the axis .Of tEdﬂh flux t?bﬁ an.dx?] I?I
facing an indefinite plane. Moreovey,must vanish in the the abscissa o, (negative in the case of the sixth flux
connection betweeh andM, i.e., forr =r. By these crite- tubs, the _dlstance_ frony of the generic point of the_flux
fia the current density oM (with O<r<rg) is approxi- tube axis isx,+1,sinf,. Consequently, the cross section of
mated by the kth flux tube is given by

r\12 Sk(lk):hKZW(Xk‘f‘|kSinek):Z’iThZK(lk/lzk)(xk+|k5in0k).

I

0.321+ coa( - (A5) (A9)
2rg

) ) ) The integral(A8) becomes therefore
The constan§ will be obtained from the curren, flowing

into the mercury fronM (see Fig. 5. The currents, andl P Ik X+ 15 SinGy
are obtained by two conditionsi) I, +1y =10, wherely is R« 11k Xe+ 1 14SiN6,
the total current flowing in the circuit, andi) 1 /1y,

=RVM/ RVL’ where R\,L is the resistance between the elec-From Egs.(A6), (A7), and(A10) and the values
trodeV andL and Ry,, is the resistance between the elec-
trodeV andM.

To obtain a good approximation for the valuesRef and y1=0.5625 cm, y,=1.15 cm, y,=1.6 cm,
Ry,, we have divided the flux tubes starting from the lateral (Al1)

wall V| of the central conductoy into six parts and those
starting from the bottonb of V into four parts, as shown in
Fig. 7. Of the six parts starting from,_, five end oL, while 2,666 4.941
the sixth part ends partially obh (roughly =2/3) and par- Ry, = =

tially on M (roughly =1/3). The four parts starting froivi,
end onM. The spacing of the traces of the flux tubes on th
xy plane is inversely proportional to the current densities

given by Eq.(A4) for the lateral wallL and by Eq.(A5) for 1, Ry
the bottomM. For simplification we have taken straight flux T =R
lines for the current. Then we get L Vi

~Smo e . (A10)

a=0.25 cm, r,=1.25832 cm, ry=1.52 cm,

we obtain

. Ry, , (A12)

27O 270

—0.539 57. (A13)
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Sincely=1y+1_ we have finally

Now from
. ym .
|L21027Trof dy cosT=jodro(ym—Ys) (ALD)
Vi
we obtain, with the use of EqA14),
0.6499
=0.102 96l ,, (A16)

Lo o (Ym—y1)

wherej, is measured in Am?2. Similarly, from

ar | ]2
0.321+ cos( -— }
2rg

"o
Iszgzwf drr
0

8 (1
=js ;rg{z (0.32%5)2+0.647 cogs)+s sin(s)— 1]

2
+

S . ) 1 5 1
5 +Zsm( s)+§cos{ s)—g

, (A17)

wheres= 7r,/2r, we get, from Eqs(Al14) and (A17),

j6=0.09892,. (A18)
Having obtained the distribution of the current densities is
suing fromL andM it is possible to get the currehtin the
central conductoW, taking, with a good approximation, the
current densitie$y, andj\,L on the base and the lateral wall,

respectively, ol, as uniform. Denote by, ..y, the cur-
rent ending on the lateral wall o and starting partially
from the lateral wallL of the trough and partially from the
bottomM of the trough. Denote by, _,yp, the current start-
ing from the large central part of the bottdvh of the trough
and ending on the badeof V. We thus have

lLemoy =1L TAl (A19)

and

Iv—vb=Iw—Al, (A20)

where the contributior | to the bottomM of the trough is
given by the integral in Eq(A17) where the lower limit is
set equal ta 5. Inserting the values given by Eq#11) and
(A18) gives

Al1=0.0072,. (A21)
We get from Eqs(A14), (A19), (A20), and(A21)
IL+M~>VL:O'656101 IMﬂVb:O'3433O' (A22)

Consequently, the curretin V turns out to be given by
MIU—M—»VL: 0.3433+0.656ﬁ lo.
b™ Yf

=1 +
M—Vb Vi
(A23)
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=i

-

FIG. 8. WallL of Figs. 5 and 7 has been expanded so as to be
tangential to the internal bottoml at a point having coordinates
Xx=—rg andy=y,. Some flux linegschematized by straight seg-

mentg of superficial currengd flowing in the bronze are showr(
onlL andJ,, on M).

It is more difficult to evaluate the currenis andJ,, per
unit length on the lateral wall and the bottom of the mer-
cury M, respectively. It would be necessary to soNée
=0 with partially Dirichlet and Neumann conditions, taking
into account the effective values of the conductivities. It is
much easier to give approximated, sensible expressions that
keep the error in the calculation &f, to within 5%. The
most important contribution té&,, is due to thel, nearG
since, because of the current flowing in the mercugypro-
gressively decreases as we consider parts édrther and
further fromG and vanishes irZ (oppositeG; see Figs. 5

and §. With a very good approximatiord, is radial in the
part of L that starts fromG and extends symmetrically from
the planep of symmetry containing th& andy axes, down
to M (vertically) and, laterally, to a liney= /(y) we deter-
mine later(see Fig. 8 Using as coordinateg and the dis-
tanceq from G (x=—rq, y=Yys), for y>y; we have the
continuity equation

dJ.q)
dqg

(A24)

The coordinates of a point on are q and the angle/ be-
tween the plane containing tlyeaxis and passing throudh
and the plane passing through thexis and the considered
point. Let us integrate EqA24), valid for 0<y¢<<y(y) and
YVi<y<Ym, along the straight lineg—y;=mryy (wherem

is the angular coefficient For g—0 we must havel,
=J_mq so that use of Eq(A4) gives

Jg——

ko

v
-7 jacosi(rodn a2
Yi. =0
X[(rop)®+(y—yp*1"2 (A25)
Sincedy=dy(mry) "1 and withT given by Eq.(A4) we get
3.q— 0 'Jyd( )(1+m2) s( )
—-——=— - m~4)cos — ,
Ld p Jo y YUY — Vs 2 Vv
(A26)

™YY

0<y<i(y),

whence
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of straight flux lines(see Fig. 8 The values fordy(rq, )

L
JL=[(ro¢)2+(y—yf)2]1’2[;0—1—2[(r01/;)2+(y—yf)2] have to be equal to the corresponding ones of the lateral
T current fory=y,,, i.e.,
X(T sinT+cosT— 1)}, ILYm, ) =Iu(ro, ). (A35)
(A.27)

The continuity equation oM is dJy, /dx= —j, which has to
0<y<ul(y). be integrated along the straight line —rysing giving, with
the use of Eq(A5),
They and the azimuthal components are given, respectively,

b x
’ JM(X,IJI):JM(VO,'J!)—J'SJ dX[0.321
Juy=Jd(y—ypla, I ,=Iroedlq, (A28) focosy )
) o2 2 i) 2
so in vector form we have +co 5 (xe+rgsimy)“Irg; . (A36)
=AY —yne+rog(esing—ecosp)]/q, (A29) The reliability of this result is due to the check that for

=rycosy (the terminal of flux lines oiM) Eq. (A35) is still
heres. & & th it vect f the Cartesi atisfied to within 1% of the value at= —r,cos) (the be-
wheree, &, €, are the unit vectors ot the Lartesian axes and;inning of the flux lines ortM). Actually, the flux lines orL

Ju Is given by Eq.(A27). . and M should be rounded so as to have continuous deriva-
The flux lines of the currents per unit lengths are plottedtives_ However, the simplification shown in Fig. 8 is suffi-

in Fig. 8 which shows t_he mercury trough expand(_ad on th%ient to guarantee an error less than 1% in small region of the
plane of the sheet, ha"'!‘g 'dea"y oMt along its perlphery walls and hence an error less than 0.1% for the forc&/on
andL along the generatrix passing througltsee Figs. 5 and We have now all the elements to calculate the forc&/on

8). For > y(y) we have verified that straight, radial flux . voyer “as already said in Secs. 1 and 2, the Lorentz forces
lines are still a good approximation provided they converge ’ ’

0 th int aty— o= ( f the lateral " the current flowing on mercury are transmittedMivia
O the point aty =y an 'l’__w, upper corner ot the fateral o g|actrostatic forces due to the tiny displacement of the
wall). The current distributiod, [we add a prime to distin-

L ) e electrons with respect to their ions. An equivalent way to
guish it from theJ, given by Eq.(A26)] is still given by Eq.  {axe into account this force is to calculate the whole force on
(A27) without the first term, with a reverse sign of the sec-

Aliee) > >11/3 | the current flowing iV up to aV cross section intermediate
ond term, andy’ =[ro(7— )"+ (y—ys)“]"* instead ofq,  petween a first cross section where §héux lines in the
€., mercury begin to bend downward appreciably and the cross
Y 5 P 12 section where the issuinglines reach the bottorM of the
Ji=loT AL(m=PIrol ™+ (y=y) " (TsinT+cosT-1),  mercury trough. Then starting from this cross section, we
(A30) consider a constant current along thaxis up to the bottom
= hly). M. A point of the mentioned intermediate cross section is

t f Fig. 8. It inate i
They and ¢y components are similar to those given by Eq.deno ed byX of Fig. 8. Its ordinate is

(A28), i.e., yx=1.0031 cm. (A37)
yomy Yy g Fo(m— ) (a31)  The current flowing through cross sectioXi is, as obtained
Ly L e ’ from Eq. (A23) by settingy=vyy,
or, in vector form, Ix=0.5079,. (A38)
I =3[[(yr—y")e+ro(m— ) (e siny—ecosp)]/q’, Then we keep =1 fromyy toy,,. Summarizing, the effec-
(A32) tive current on which we must calculate the Lorentz force is
with J/ given by Eq.(A30). lo for Osy<y;
The line = ¢(y) is obtained by equating =y
=10 — 0.34330+0.656{ — )Io foryssy<yx
I, 9=y, ) (A33) veft f
Iy for yysy<ypm.
and turns out to be given by
(A39)

(y)=0.772 189%—0.982 26§ +1.139 38. (A34) i . _
At this point we can calculate the force ahin the £

This line is shown by a dashed line in Fig. 8. configuration due to wire 5, sectiowG, and the lateral wall
A good approximation for the curred, per unit length L. Denoting bye,,€, &, the unit vectors of the Cartesian
flowing on the bottorrM of the mercury trough is a pattern axes we have for the component of the force
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the currentl nearM is smaller tharl; whereasl =1, near
- conductor 3. However, the round connections of jtHeux
7 0 lines between those flowing insidé and those inside the
G mercury give a cumulative effect equal to and opposite that
To near 3. Consequently, we have for thecomponent of the
y force

~ Ym~Ry ~
FIG. 9. Connection of wire 4 of Figs. 1 and 2 with the mercury Fv,, T Fva=6& f dy I(—g)xB(y)
trough for theS configuration. This detail replaces partN(, and Rv
the beginning ol of Fig. 5 (which is relevant to theC configura- fym— Ry

tion). = dy 1B, (A45)

Ry

N Ym ~ . . .
Fus+Fy, +Fv, =& fo dy 1(—&)xB(y) wherel is still given by Eq.(A39) andB, by

B,= BZM+BZ3
Ym
:—jo dy IBZ1 (A40) _M0|0rofqr/2d¢ COS’/] rocosp dx éz J r_rn
2 0 —rocosy M |I'—I'”|3

wherel is given by Eq.(A39) andB, by

B, =Byt By 7By + Ziﬂ (h2+hy2)1/2_ (R2 _T;Z)lIZl ’ (A46)
Mol o[ 1 | lo _ R !
= 19 (|2+y2)1’2_ (r§+y2)l’2] with Jy=Jyu e and
1 Vimy y r—=r"=(y—Ym)€& —X&+roSinge,. (A47)
+a [r§+(y—yf)2]l’2+ (r§+y2)1’2 Numerical calculations yield

Fy, +Fy,= —o.2oo7£|§. (A48)

y ' - r—r’
+2r0f mdy’ JW )dw e, J X e
vt 0 Ir=r’|

m - r—r’
+f diy eI X——— ]

The force due to wire 4 oW is negligible sinceB, is almost
parallel to they axis aroundV. The total force onV has
therefore arx component given by

2

wy') “lr=r)?
' i i ol
whereJ_ andJ| are given by Eqs(A29) and(A32), respec Fys=0.33791+0.08 =,

tively, #(y’) is given by Eq.(A34), and (A49)
r—r'=ro(ecoss+esing)+(y—y'le,. (A42 13
ol&cositesing)+(y—y')e.  (A42) F.,—0.29191+0.08 /Zoﬂo_
Numerical calculations yield
The values given by EqA49) are somewhat less than,
_ 0,2 : and in acceptable agreement with, the corresponding values
Fys+Fy +Fy =0.4926—1I : Ad
vt FygtFy =0.49 6:_77 oin £ (A43) (A3) obtained by the very rough approximation of a simple
wire. Since we have two mercury troughs, the total force on

In the S configuration, wire 5 is absent and wire 4 is the electrode¥ is twice that given by Eq(A49).
electrically connected to the mercury trough as in Fig. 9. The

average paths of the current &>, PQ, andQG; from G
the average path is as in tifeconfiguration. Numerical cal-
culations yield

APPENDIX B

The integrand of Eq(11) contains an integrable diver-
gence, as is clear from Ed6). In fact, it diverges as
[r—r’|~2 for r’ —r although, for anyr, the numerator has
the third-order infinitesimal quantitg®r’ that makes the in-

(A44)  tegral converge. This feature makes it difficult to evaluate

numerically the integral with an accuracy of four significant

In order to calculate the force oridue to wire 3 and the figures. For instance, the usual best method, that of Gauss,

bottom M, we eliminate the first connection & with 3  cannot be applied since two subsequent zeros of Legendre

(with lengthRy=1.5a=0.375 cm and the last part of the polynomials can be highly asymmetric with respect to a

(artificially) prolongedV near the bottonM (still Ry) since  point of divergence. The addition of a small quanttjo the

the effects of the two connections are equal and opposite ardenominator of the integrand gives a small advantage since,

their exact calculations are very long. Actually, in our caseif we fix five of the six variables of integration and vary the

— 0,2 ;
Fue™ Fupg ™ Fuge™ Fy, =0.5386 12 in 5.
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FIG. 10. Thed denote the numerical results and interpolating
line b of the six-fold integral(11) obtained by a Monte Carlo
method vsn, wheren is the exponent of the smoothing teren
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FIG. 11. Numerical results of the six-fold integrdll) vs the

=10""added to the denominator of Ed.1), and theA denote the numberN of points used for the variablé (the variabled’, be-

numerical results and interpolating linkof the five-fold integral ~ cause of the axial symmetry of the circuit, requiNg2 points. The

(B1) obtained by a Monte Carlo method. results are obtained by a regular division of the points, thus imitat-
ing the average behavior of the electrons.

sixth one, the divergence changes sign when we cross the

pointr’=r. wherear=a/R [with a andR given by Eq.(3)] and

The quickest method to calculate multiple integrals is the
Monte Carlo method. Adding=10"" to the denominator of
Eqg. (11 and performing many calculations for eanhwe
have obtained the values shown by circles in Fig. 10. We see
that there are strong fluctuations by changing the seed of the
generated random numbers and the numiberf points cal-
culated. Strong fluctuations remain up fo=2x10°. The
interpolating lineb is uncertain, so even the second signifi-
cant figure is unreliabl¢see the caption of Fig. 10

We have succeeded in performing an analytical calcula-
tion of the integral overs, thus reducing Eq(1l) to the
five-fold integral

B=(1+s'cos’)—cog 94— '),
C=co<t cogf9— '),

D=cost—s’'siné siné’ —(1+s'cost’)cog 3 — ') co<,
(B2

F=2+s'2+2s'cos’ —2(1+s'cost’)cod 9 —9'),

R=\a5+2Dag+F.

. wol 1o RAJa/R » ,fZWd fzqfd )
Y4\ a2 0 s as 0 ¢ 0 ¢ We have added the small quantiéy=10"" in the denomi-
X nator of Eq.(B1) as we have done for the six-fold integral.
g LR , , agC By the same procedure used for Efjl), we have obtained
X fo dﬁfo dd's’sind(1+s'cost )[ T Rte the values shown by triangles in Fig. 16till vs n). The
accuracy of the interpolating lind is not better than the
C cost[Dag(5F —6D?)+F(2F —3D?)] previous ones.
+ > Finally, a good result for the integral has been obtained by
(F-D)R+e imitating the average distribution of the electrdpsoducing
2 the current in the considered wjrthat are equally spaced.
n (B cog—C)[ag(F—2D%) ~FD]+B(F +Dag) We have therefore divided each variable into equal parts and
(F-D?>R+e calculated the force on each point excluding the action of the
5 considered point on itself. We then varied the number of
N \/EC cost(2F —3D7) —(B cot—-C)D+B divisions of each variable and verified that the results be-
F—D2+¢ come insensitive to further increases after 30 divisionstfor
and¢’, 20 fors ands’, while the convergence is very slow
|R+ag+D|+e for 9 andd'. We have therefore drawn the plot, shown in

+(3DC co<+B cot—C)in

|VF+D|+e |

(B1)

Fig. 11, of the values of the integral verddswhich denotes
the number of points off (we have divided the circuit into
two parts exploiting its symmetry so thilt for ¥’ is equal
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to N/2). There are no fluctuations and the curve interpolating o|3
the results is Fi1=Fisar 8.801§;—W. (B4)
21.742
J=880131 n32-163.1729" (B3) Since the contribution to the total force on the circuit is by
far the largest one, its accuracy up to and including the
whose asymptotic value is 8.8015, so that fourth significant figure is necessary.
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